Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan

Identifieur interne : 000242 ( Main/Repository ); précédent : 000241; suivant : 000243

Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan

Auteurs : RBID : Pascal:14-0003211

Descripteurs français

English descriptors

Abstract

III-V concentrator photovoltaic systems attain high efficiency through the use of series connected multi-junction solar cells. As these solar cells absorb over distinct bands over the solar spectrum, they have a more complex response to real illumination conditions than conventional silicon solar cells. Estimates for annual energy yield made assuming fixed reference spectra can vary by up to 15% depending on the assumptions made. Using a detailed computer simulation, the behaviour of a 20-cell InGaP/In0.01¡GaAs/Ge multi-junction concentrator system was simulated in 5-min intervals over an entire year, accounting for changes in direct normal irradiance, humidity, temperature and aerosol optical depth. The simulation was compared with concentrator system monitoring data taken over the same period and excellent agreement (within 2%) in the annual energy yield was obtained. Air mass, aerosol optical depth and precipitable water have been identified as atmospheric parameters with the largest impact on system efficiency.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0003211

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan</title>
<author>
<name>NGAI LAM ALVIN CHAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Imperial College London, South Kensington</s1>
<s2>SW7 2BZ</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>SW7 2BZ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Young, Thomas B" uniqKey="Young T">Thomas B. Young</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Imperial College London, South Kensington</s1>
<s2>SW7 2BZ</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>SW7 2BZ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Brindley, Helen E" uniqKey="Brindley H">Helen E. Brindley</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Imperial College London, South Kensington</s1>
<s2>SW7 2BZ</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>SW7 2BZ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ekins Daukes, Nicholas John" uniqKey="Ekins Daukes N">Nicholas John Ekins-Daukes</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Imperial College London, South Kensington</s1>
<s2>SW7 2BZ</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>SW7 2BZ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Araki, Kenji" uniqKey="Araki K">Kenji Araki</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Daido Steel, Minami-ku</s1>
<s2>Nagoya 457-8712</s2>
<s3>JPN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Nagoya 457-8712</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kemmoku, Yoshishige" uniqKey="Kemmoku Y">Yoshishige Kemmoku</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Toyohashi Sozo University</s1>
<s2>440-8511 Toyohashi</s2>
<s3>JPN</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Toyohashi Sozo University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yamaguchi, Masafumi" uniqKey="Yamaguchi M">Masafumi Yamaguchi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Toyota Technological Institute, Tempaku</s1>
<s2>Nagoya, 468-8511</s2>
<s3>JPN</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Nagoya, 468-8511</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0003211</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0003211 INIST</idno>
<idno type="RBID">Pascal:14-0003211</idno>
<idno type="wicri:Area/Main/Corpus">000377</idno>
<idno type="wicri:Area/Main/Repository">000242</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1062-7995</idno>
<title level="j" type="abbreviated">Prog. photovolt. : (Print)</title>
<title level="j" type="main">Progress in photovoltaics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aerosols</term>
<term>Air mass</term>
<term>Computer simulation</term>
<term>Energetic efficiency</term>
<term>Energy analysis</term>
<term>Forecasting</term>
<term>Gallium phosphide</term>
<term>Germanium</term>
<term>High efficiency</term>
<term>Humidity</term>
<term>III-V compound</term>
<term>Indium phosphide</term>
<term>Irradiance</term>
<term>Japan</term>
<term>Monitoring</term>
<term>Multijunction solar cells</term>
<term>Performance evaluation</term>
<term>Photovoltaic system</term>
<term>Precipitable water</term>
<term>Series connection</term>
<term>Silicon solar cells</term>
<term>Solar cell</term>
<term>Solar energy concentrator</term>
<term>Solar spectrum</term>
<term>Ternary compound</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Prévision</term>
<term>Concentrateur solaire</term>
<term>Japon</term>
<term>Système photovoltaïque</term>
<term>Rendement élevé</term>
<term>Montage série</term>
<term>Cellule solaire multijonction</term>
<term>Cellule solaire</term>
<term>Spectre solaire</term>
<term>Eclairement énergétique</term>
<term>Cellule solaire silicium</term>
<term>Rendement énergétique</term>
<term>Simulation ordinateur</term>
<term>Humidité</term>
<term>Aérosol</term>
<term>Monitorage</term>
<term>Masse air</term>
<term>Eau précipitable</term>
<term>Evaluation performance</term>
<term>Analyse énergétique</term>
<term>Composé III-V</term>
<term>Phosphure de gallium</term>
<term>Phosphure d'indium</term>
<term>Composé ternaire</term>
<term>Germanium</term>
<term>InGaP</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Japon</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Rendement énergétique</term>
<term>Aérosol</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">III-V concentrator photovoltaic systems attain high efficiency through the use of series connected multi-junction solar cells. As these solar cells absorb over distinct bands over the solar spectrum, they have a more complex response to real illumination conditions than conventional silicon solar cells. Estimates for annual energy yield made assuming fixed reference spectra can vary by up to 15% depending on the assumptions made. Using a detailed computer simulation, the behaviour of a 20-cell InGaP/In
<sub>0.01</sub>
¡GaAs/Ge multi-junction concentrator system was simulated in 5-min intervals over an entire year, accounting for changes in direct normal irradiance, humidity, temperature and aerosol optical depth. The simulation was compared with concentrator system monitoring data taken over the same period and excellent agreement (within 2%) in the annual energy yield was obtained. Air mass, aerosol optical depth and precipitable water have been identified as atmospheric parameters with the largest impact on system efficiency.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1062-7995</s0>
</fA01>
<fA03 i2="1">
<s0>Prog. photovolt. : (Print)</s0>
</fA03>
<fA05>
<s2>21</s2>
</fA05>
<fA06>
<s2>8</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>NGAI LAM ALVIN CHAN</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>YOUNG (Thomas B.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BRINDLEY (Helen E.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>EKINS-DAUKES (Nicholas John)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ARAKI (Kenji)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>KEMMOKU (Yoshishige)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>YAMAGUCHI (Masafumi)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, Imperial College London, South Kensington</s1>
<s2>SW7 2BZ</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Daido Steel, Minami-ku</s1>
<s2>Nagoya 457-8712</s2>
<s3>JPN</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Toyohashi Sozo University</s1>
<s2>440-8511 Toyohashi</s2>
<s3>JPN</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Toyota Technological Institute, Tempaku</s1>
<s2>Nagoya, 468-8511</s2>
<s3>JPN</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>1598-1610</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26755</s2>
<s5>354000504265510050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>47 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0003211</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Progress in photovoltaics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>III-V concentrator photovoltaic systems attain high efficiency through the use of series connected multi-junction solar cells. As these solar cells absorb over distinct bands over the solar spectrum, they have a more complex response to real illumination conditions than conventional silicon solar cells. Estimates for annual energy yield made assuming fixed reference spectra can vary by up to 15% depending on the assumptions made. Using a detailed computer simulation, the behaviour of a 20-cell InGaP/In
<sub>0.01</sub>
¡GaAs/Ge multi-junction concentrator system was simulated in 5-min intervals over an entire year, accounting for changes in direct normal irradiance, humidity, temperature and aerosol optical depth. The simulation was compared with concentrator system monitoring data taken over the same period and excellent agreement (within 2%) in the annual energy yield was obtained. Air mass, aerosol optical depth and precipitable water have been identified as atmospheric parameters with the largest impact on system efficiency.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02C1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D06C02D2</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D06C02B</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Prévision</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Forecasting</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Previsión</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Concentrateur solaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Solar energy concentrator</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Concentrador solar</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Japon</s0>
<s2>NG</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Japan</s0>
<s2>NG</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Japón</s0>
<s2>NG</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Système photovoltaïque</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Photovoltaic system</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Sistema fotovoltaico</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Rendement élevé</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>High efficiency</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Rendimiento elevado</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Montage série</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Series connection</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Montaje serie</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Cellule solaire multijonction</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Multijunction solar cells</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Spectre solaire</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Solar spectrum</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Espectro solar</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Eclairement énergétique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Irradiance</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Aclaramiento energético</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Cellule solaire silicium</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Silicon solar cells</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Rendement énergétique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Energetic efficiency</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Rendimiento energético</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Simulation ordinateur</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Computer simulation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Simulación computadora</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Humidité</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Humidity</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Humedad</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Aérosol</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Aerosols</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Aerosol</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Monitorage</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Monitoring</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Monitoreo</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Masse air</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Air mass</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Masa aire</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Eau précipitable</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Precipitable water</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Agua precipitable</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Analyse énergétique</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Energy analysis</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Análisis energético</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Phosphure de gallium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Gallium phosphide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Galio fosfuro</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>25</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>25</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Germanio</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>InGaP</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Asie</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Asia</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Asia</s0>
<s2>NG</s2>
</fC07>
<fN21>
<s1>006</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000242 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000242 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0003211
   |texte=   Validation of energy prediction method for a  concentrator photovoltaic module in Toyohashi Japan
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024